UV/Optical and X-ray Flares in Gamma-ray Burst Light Curves

Galaxies meet GRBs at Cabo de Gata

Craig Swenson (PSU), Pete Roming (SwRI), Max De Pasquale and Sam Oates (MSSL)

Flares in the Swift era

• X-ray flares in as many as 50% of GRBs

(O'Brien+2006)

- Distinctly separate emission source than afterglow
- Long/Short GRBs
- Observed to $T_0 > 10^5 s$
- Internal source "likely"

(Romano+2006, Flacone+2006, Morris2007, Campana+2006, Cusumano+2007, Swenson+2010)

Burrows+2005

- Studies with limited samples
 - Falcone+2007, Chincarini+2007
 - 110 GRBs and 33 Flares
 - Chincarini+2009
 - Only GRBs with measured z
 - Chincarini+2010
 - Clearly distinguishable
 - T_{peak} < 1000 s
 - Fitted with analytic function
 - Margutti+2010
 - 9 bright flares

Chincarini+2010

What about the UVOT?

- Largely overlooked (Roming+2006)
 - More difficult to identify than X-ray flares
 - Lower significance
 - UVOT light curves split across multiple filters

 Lower sampling frequency unless light curves are normalized

What about the UVOT?

- Second Swift UVOT GRB Catalog (Roming+inPrep)
 Catalog of UVOT GRB observations through December 2010
 - Light curves produced using optimal co-addition (Morgan+2008)
 - Higher rate of detections than previously (over 50%)
 - Light curves are more densely sampled on a per-filter basis
 - Normalized light curves
 - Multi-filter observations are normalized to a single filter

The search for Flares

- Blind, systematic search for flare in both the UV/optical and X-ray
 - Determine the optimal fit to each light curve using the Bayesian Information Criterion (BIC) (Schwarz1978)

$BIC = -(2 \times L) + k \times \ln(n)$

k = # of free parameters to be estimated n = # of data point being fitted L = $(\log p(D | \theta_{j}, M_j)) - (\log p(D | \theta_{j+1}, M_{j+1}))$

- BIC is a comparative tool
 - Not a confidence interval or goodness of fit measure
 - A "summary of the evidence provided by the data in favor of one scientific theory, represented by a statistical model, as opposed to another" (Kass&Raftery1995)

 $-\operatorname{BIC}_i - \operatorname{BIC}_{MIN} < 6$

Flare identification

- strucchange package in R (Zeiles+2002)
 - Iteratively fits light curve
 - Identifies optimal number "breakpoints" needed to fit data
 - Calculates BIC value
 - Backstep to avoid over-fitting
- Perform 10,000 Monte Carlo iterations
 Recoverability/"Confidence"

GRB 090926A

GRB 090926A

Flare Catalogs

UV/Optical Flaring

- 201 Swift UVOT GRB light curves
 – Jan 2005 – Dec 2010
- 68 light curves with flaring (33%)
 119 flaring periods
- T_{start} T_{stop} T_{peak} $\Delta t/t$, $\Delta F/F$
- Swenson+2013a (ApJ)

X-ray Flaring

- 680 *Swift* XRT GRB light curves
 - Jan 2005 Dec 2012
- 324 light curves with flaring (48%)
 497 flaring periods
- T_{start} , T_{stop} , T_{peak} , $\Delta t/t$, $\Delta F/F$
- Swenson+2013b (inPrep)

To Flare, or Not to Flare

X-ray Flaring

- 680 *Swift* XRT GRB light curves
 - Jan 2005 Dec 2012
- 324 light curves with flaring (48%)
 497 flaring periods
- T_{start} , T_{stop} , T_{peak} , $\Delta t/t$, $\Delta F/F$

X-ray Flares

Distribution of $\Delta t/t$

UV/Optical Flares

Distribution of $\Delta t/t$

Results

- 75% of UV/optical flares with $\Delta F/F > 2$ occurred > 1000 s
 - Not observed in the X-ray
- 83% peak < 1000 s
- Significant number of X-ray flares with $\Delta t/t > 0.5$
 - Allows for external shocks?

Flare cross-correlation

- 263 GRBs with flares (Jan 2005 Dec 2012)
 - 68 UV/optical
 - 235 X-ray
- 60% of UV/optical have potential X-ray counterparts
 - Similar emission mechanism?
- 40% of UV/optical with no X-ray counterparts
 - Different emission mechanism?
- 83% of X-ray with no UV/optical countparts

Future work

- Examine correlated flares
 Lag time
- Correlation to GRB energetics
- Why 50/50 split in X-ray flaring
- Flares with $\Delta t/t > 0.5$