Using γ -ray bursts as tools prompt emission mechanism

Technische Universität München Max-Planck-Institut für extraterrestrische Physik Ph.D. Defence Presentation

History of GRBs Isotropic Two Classes

History of GRBs

Gamma-ray bursts (GRBs) were first discovered by the Vela military satellites. They are the brightest object in the Universe (Luminosities $\sim 10^{53}\,{\rm erg\,s^{-1}}$).

They had the two main properties:

- 1. Isotropic
- 2. Two classes based on temporal duration

History of GRBs Isotropic Two Classes

Isotropic

1. The distribution of GRBs in the sky was seen quite early to be isotropic.

Paciesas+94

This was believed to be a result of the fact that GRBs were cosmological and later proven by a spectroscopic redshift.

History of GRBs Isotropic Two Classes

Two Classes

1. The duration of the gamma-ray emission in the observer frame gives rise to two distinguishable classes.

NASA+13

Note: T_{90} is the time in which 90% of the gamma-ray flux was emitted. **Long-duration**: $T_{90} > 2$ seconds **Short-duration**: $T_{90} < 2$ seconds Jonathan Elliot

History of GRBs Isotropic Two Classes

Summary of Properties

- 1. Long-soft GRBs (${\it T}_{90}>2\,{\rm s})$ up to $\sim 300\,{\rm s}$
- 2. Short-hard GRBs ($T_{90} < 2\,\mathrm{s})$
- 3. Cosmological sources
- 4. γ -ray, X-ray and Optical detections
- 5. Power law spectra and light curves

Current Picture Current Picture Cont

Standard Models

Current Picture Current Picture Cont

Standard Models

IERGER SCENARIO

Publications

- Elliott et al. 2012, The long γ-ray burst rate and the correlation with host galaxy properties, *Astronomy & Astrophysics*, **539A** A113E
- Elliott et al. 2013, First Billion Years Simulation
 2: Populating γ-ray bursts at z > 5, Astronomy
 & Astrophysics in prep.

Current Picture Current Picture Cont

Standard Models

Current Picture Current Picture Cont

Standard Models

Publications

 Elliott et al. 2013, Insight into the prompt emission period with simultaneous γ-ray/NIR wavelength observations of γ-ray burst 121217A, Astronomy & Astrophysics submitted

Current Picture Current Picture Cont

Standard Models

Current Picture Current Picture Cont.

Standard Models

What does the environment and it's galaxy tell us?

Current Picture Current Picture Cont.

Standard Models

What does the environment and it's galaxy tell us? Publications

 Elliott et al. 2013, The low-extinction afterglow in the solar-metallicity host galaxy of γ-ray burst 110918A, Astronomy & Astrophysics, 556 A23

Swift & GBM GROND GROND's Filters

GRBs are detected using space-based observatories. We primarily use the two NASA satellites *Swift* and *Fermi*.

- A. Swift has Burst Alert Telescope (BAT), an X-ray Telescope (XRT) and an Ultra-Violet/Optical Telescope (UVOT)
 8.3 pm (150 keV) → 192.8 nm (6.5 eV)
- B. Fermi has a Large Area Telescope (LAT) and a Gamma-Ray Burst Monitor (GBM)

4.1 am (300 GeV) \rightarrow 0.2 nm (8 keV)

GROND

The Gamma-Ray burst Optical Near-infrared Detector (GROND) is a multi-channel imager located in Chile at La Silla (the chair).

GROND

Swift & GBM GROND GROND's Filters

GROND's Filters

GROND has seven filters: four optical bands (g'r'i'z') that are similar to the Sloan digital sky survey, and three near-infrared (JHK) channels like the two-micron sky survey.

The unique ability of GROND is that all seven filters are exposed at the same time.

Prompt Emission X-ray/NIR/Optical Light Curve Why is this interesting? Fireball Model Internal Shock Model Problems Alternative Models

GRB Detection

- Detected on 17th December 2012 by *Swift*
- 2 Observed with:
 - Swift/BAT/XRT(/UVOT no detection)
 - Fermi/GBM
 - GROND
- 3 Two discernible peaks

Prompt Emission X-ray/NIR/Optical Light Curve Why is this interesting? Fireball Model Internal Shock Model Problems Alternative Models

X-ray/NIR/Optical Light Curve

Prompt Emission X-ray/NIR/Optical Light Curve Why is this interesting? Fireball Model Internal Shock Model Problems Alternative Models

Why is this interesting?

The main drivers for investigating this GRB are:

- 1. Limited number of detections of optical emission during the prompt period
- 2. Limited samples have a range of selection criteria
- 3. Each burst has shown different results, still no consensus
- 4. Even if they are observed, they do not always have more than one filter

Prompt Emission X-ray/NIR/Optical Light Curve Why is this interesting? Fireball Model Internal Shock Model Problems Alternative Models

Fireball Model

The most tested (favoured) model of the prompt emission is the *internal shock* model. This entails:

- 1. Shells of electron/positron/photon fireballs with varying Lorentz factors are emitted from a central engine
- 2. These shells cross one another and create internal shocks
- 3. These shocks accelerate electrons via Fermi acceleration
- 4. These electrons cool via synchrotron emission \rightarrow Power law

Prompt Emission X-ray/NIR/Optical Light Curve Why is this interesting? Fireball Model Internal Shock Model Problems Alternative Models

Fireball Model Cont.

Prompt Emission X-ray/NIR/Optical Light Curve Why is this interesting? Fireball Model Internal Shock Model Problems Alternative Models

Fireball Model Cont.

Prompt Emission X-ray/NIR/Optical Light Curve Why is this interesting? Fireball Model Internal Shock Model Problems Alternative Models

Fireball Model Cont.

Zoom light curve

Prompt Emission X-ray/NIR/Optical Light Curve Why is this interesting? Fireball Model Internal Shock Model Problems Alternative Models

Fireball Model Cont.

Prompt Emission X-ray/NIR/Optical Light Curve Why is this interesting? Fireball Model Internal Shock Model Problems Alternative Models

Fireball Model Cont.

Expect a power law from synchrotron theory

1. Broken power law spectrum:

$$F(\nu) = F_0\left(\left(\frac{\nu}{\nu_m}\right)^{-\beta_1} + \left(\frac{\nu}{\nu_m}\right)^{-\beta_2}\right)$$

- ν_m the break frequency
- \blacksquare $\beta_1,~\beta_2$ the slopes above and below the break frequency
- F_0 the normalisation of the spectrum at a given time and frequency (t_0, ν_0)
- 2. (another model: Band function completely empirical)

Prompt Emission X-ray/NIR/Optical Light Curve Why is this interesting? Fireball Model Internal Shock Model Problems Alternative Models

Fireball Model Cont.

■ $\beta_1 = -0.29 \pm 0.06$

$$\beta_2 = 0.64 \pm 0.05$$

•
$$\nu_m = 6.06 \pm 0.86 \, \mathrm{keV}$$

But what do we expect from synchrotron theory?

Prompt Emission X-ray/NIR/Optical Light Curve Why is this interesting? Fireball Model Internal Shock Model Problems Alternative Models

Fireball Model Cont.

Prompt Emission X-ray/NIR/Optical Light Curve Why is this interesting? Fireball Model Internal Shock Model Problems Alternative Models

Fireball Model Cont.

Prompt Emission X-ray/NIR/Optical Light Curve Why is this interesting? Fireball Model Internal Shock Model Problems Alternative Models

Internal Shock Model Problems

There are still several problems with the internal shock model:

- 1. low radiative efficiency
- 2. incorrect peak energies
- 3. large magnetic fields can inhibit radiation
- 4. expect quasi-thermal photosphere component at high energies

Prompt Emission X-ray/NIR/Optical Light Curve Why is this interesting? Fireball Model Internal Shock Model Problems Alternative Models

Alternative Models

The synchrotron-like emission could originate from other mechanisms:

- 1. Magnetically heated outflow (synchrotron emission)
- 2. Poynting-flux dominated outflows (Band-like emission)

Summary & Outlook

- 1. We showed that the prompt-emission period of GRB 121217A can be explained by synchrotron emission and within the framework of the internal shock model
- 2. We were limited by spectral sampling during the prompt emission due to technical reasons
- 3. Observations are needed with high-time resolution and in multiple filters
- 4. This is currently possible at the Very Large Telescope (ESO), e.g.: NACO
- 5. Underlying problems that will continue to plague us: the possibility of triggering and the complexity of the emission