THERMAL EMISSION IN THE EARLY X-RAY AFTERGLOWS OF GRBS

Mette Friis Centre for Astrophysics and Cosmology, University of Iceland Galaxies meet GRBs at Cabo de Gata, 2013

Outline

- Data:
 - Sample Selection and Analysis
 - Detections of Thermal Components
 - Blackbody Model Parameters
- Theory:
 - Supernova Shock Break-out
 - Late Photospheric Emission
 - Model Parameters

Data Sample

• Swift XRT-detected bursts

Minimum of 20.000 counts

Known redshifts

Total of 28 bursts

Data Sample

• Swift XRT-detected bursts

Minimum of 20.000 counts

Known redshifts

Total of 28 bursts

 Multiple spectra were extracted for each burst, so the temporal evolution can be studied

• Fitted with Band model vs. Band+Blackbody

 Monte Carlo analysis was performed to determine fit statistic

Detections

- 8 out of 28 bursts have a clear detection of thermal emission (3 σ or better)
- 5 of these thermal components have not been observed before.

GRBs: 060202, 060218, 060418, 061007, 061121, 090424, 090618 and 100621A

Spectra for 061007

Blackbody parameters for the statistically significant detections

GRB	Redshift	refs.	$\Delta\chi^2$	bb lum. ^a	bb % ^b	kT/keV
060202	0.783	(1)	28.1	$2.7^{+0.1}_{-0.2}$	13	$0.38^{+0.01}_{-0.02}$
060218	0.0331	(2)	73.4	$0.0116^{+0.0007}_{-0.0006}$	0.24	0.156 ± 0.004
060418	1.489	(3)	33.9	$1.6^{+9}_{-0.7}$	3.5	0.53 ± 0.02
061007	1.262	(4)	36.1	119^{+12}_{-11}	10	$3.2^{+0.4}_{-0.3}$
061121	1.314	(4)	49.4	257 ± 26	0.74	2.9 ± 0.2
090424	0.544	(5)	49. 8	$0.16^{+0.01}_{-0.04}$	27	0.228 ± 0.006
090618	0.54	(6)	46.9	$1.81^{+0.08}_{-0.08}$	17	$0.74_{-0.06}^{+0.08}$
100621A	0.542	(7)	36.5	$0.73^{+0.07}_{-0.09}$	23	$0.38^{+0.39}_{-0.36}$

a: in units of 10⁴⁸ erg/s
b: percent of total luminosity in the thermal component

Friis & Watson 2013

8/28 clear detections, with indications that the Band model is not enough in the rest of the sample either

What is the origin?

Supernova shock break-out

• Typical break-out energy: 10⁴⁷ erg (Li 2007)

 Even for an asymmetric explosion precise finetuning is required to explain thermal component in GRB 060218 as shock break-out (Ghisellini et al. 2007)

Blackbody parameters for the statistically significant detections

GRB	Redshift	refs.	$\Delta\chi^2$	bb lum. ^a	bb % ^b	kT/keV
060202	0.783	(1)	28.1	$2.7^{+0.1}_{-0.2}$	13	$0.38^{+0.01}_{-0.02}$
060218	0.0331	(2)	73.4	$0.0116^{+0.0007}_{-0.0006}$	0.24	0.156 ± 0.004
060418	1.489	(3)	33.9	$1.6^{+9}_{-0.7}$	3.5	0.53 ± 0.02
061007	1.262	(4)	36.1	119^{+12}_{-11}	10	$3.2^{+0.4}_{-0.3}$
061121	1.314	(4)	49.4	257 ± 26	0.74	2.9 ± 0.2
090424	0.544	(5)	49. 8	$0.16^{+0.01}_{-0.04}$	27	0.228 ± 0.006
090618	0.54	(6)	46.9	$1.81^{+0.08}_{-0.08}$	17	$0.74_{-0.06}^{+0.08}$
100621A	0.542	(7)	36.5	$0.73^{+0.07}_{-0.09}$	23	$0.38^{+0.39}_{-0.36}$

a: in units of 10⁴⁸ erg/s
b: percent of total luminosity in the thermal component

Friis & Watson 2013

Blackbody Radius

Friis & Watson 2013

Evolution of the blackbody radius for GRB 090618.

Green line shows evolution at the apparent speed of light. Blue line shows fitted velocity.

Late Photospheric Emission

- Photospheric emission observed in prompt phase
- Temperature and luminosity is seen to decay as a power-law (Ryde and Pe'er 2009)

lyyani et al. 2013

Model Parameters

$$r_{ph} = R_{bb}^{host} \times \frac{\gamma}{\xi (1+z)^2}$$

$$\gamma = [(1+z)^2 D_L^2 \frac{F_{bb}^{obs} \sigma_T}{2 m_p c^3 R_{bb}^{host}}]^{1/4} \times (L_{tot} / L_{bb}^{obs})^{1/4}$$

GRB	Redshift	refs.	$\Delta\chi^2$	bb lum. ^a	bb % ^b	kT/keV	\mathbf{R}_{phot}^{c}	γ
060202	0.783	(1)	28.1	$2.7^{+0.1}_{-0.2}$	13	$0.38^{+0.01}_{-0.02}$	5.9 ^{5.1} 5.2	60^{+14}_{-18}
060218	0.0331	(2)	73.4	$0.0116\substack{+0.0007\\-0.0006}$	0.24	0.156 ± 0.004	$0.46^{+0.45}_{-0.46}$	40^{+9}_{-12}
060418	1.489	(3)	33.9	$1.6^{+9}_{-0.7}$	3.5	0.53 ± 0.02	$2.2^{+7.7}_{-1.2}$	<254
061007	1.262	(4)	36.1	119^{+12}_{-11}	10	$3.2^{+0.4}_{-0.3}$	$1.9^{+0.17}_{-0.18}$	328^{+100}_{-64}
061121	1.314	(4)	49.4	257 ± 26	0.74	2.9 ± 0.2	6.7 ± 1.6	669 ⁺¹⁴
090424	0.544	(5)	49.8	$0.16^{+0.01}_{-0.04}$	27	0.228 ± 0.006	19^{+23}_{-17}	26^{+8}_{-9}
090618	0.54	(6)	46.9	$1.81^{+0.08}_{-0.08}$	17	$0.74_{-0.06}^{+0.08}$	12 ± 2	<1058
100621A	0.542	(7)	36.5	$0.73_{-0.09}^{+0.07}$	23	0.38 ^{+0.39} -0.36	$2.8^{+2.6}_{-2.6}$	40^{+11}_{-10}

c: in units of 10¹³ cm

Photospheric Radius

Friis & Watson 2013

Evolution of the photospheric radius for GRB 090618.

Blue line shows fit that gives an expansion velocity at the speed of light.

Comparison with prompt phase

GRB 061007

 $\Gamma: \sim 200-600 \rightarrow \sim 300-400$

Comparison with prompt phase

GRB 061007

Larsson et al. 2011 BB lum: 75% \rightarrow 10% Temp: ~100keV \rightarrow ~3keV Γ : ~200-600 \rightarrow ~300-400 Ryde & Pe'er 2009:

Power-law indices $(-\alpha)$: Temperature: 0.3 - 1.3Luminosity: 0.8 - 4.5

The bursts in our sample is largely consistent with these numbers.

Comparison with prompt phase

Luminosity:

- 0.2 +/- 1.1 0.7 +/- 1.9 1.9 +/- 1.0
- 0.8 +/- 0.6
- 0.7 +/- 0.6

Ryde & Pe'er 2009:

Power-law indices $(-\alpha)$: Temperature: 0.3 - 1.3Luminosity: 0.8 - 4.5

The bursts in our sample is largely consistent with these numbers.

Conclusions

- Clear evidence of thermal emission in the soft Xrays in 8/28 bursts, with an indication that such a component exists in majority of bursts
- Very high luminosity and temperature suggests that supernova shock break-out is unlikely
- Late photospheric emission is a physically wellmotivated theory that allows the determination of the Lorentz factor of the flow

Conclusions

- Clear evidence of thermal emission in the soft Xrays in 8/28 bursts, with an indication that such a component exists in majority of bursts
- Very high luminosity and temperature suggests that supernova shock break-out is unlikely
- Late photospheric emission is a physically wellmotivated theory that allows the determination of the Lorentz factor of the flow

Conclusions

- Clear evidence of thermal emission in the soft Xrays in 8/28 bursts, with an indication that such a component exists in majority of bursts
- Very high luminosity and temperature suggests that supernova shock break-out is unlikely
- Late photospheric emission is a physically wellmotivated theory that allows the determination of the Lorentz factor of the flow

Thank you!

Questions?