# Gamma-Ray Bursts as Tracers of High-Redshift Star Formation: *Promises and Perils*

Daniel Perley

(Hubble Fellow, Caltech)

ArXiv:1301.5903 (+ abundant wild speculation)



#### **Cosmic Star-Formation History**



#### **Cosmic Star-Formation Sites**





## **Advantages of GRB Selection**

Inexpensive Optical afterglow redshifts are "cheap" (1 hr on a 4m telescope typically adequate)

Dust-Unbiased, in principle Gamma-ray burst and X-ray/radio afterglows unimpeded by dust

#### Sensitive to sub-threshold SFR

Host nondetections give a direct constraint on importance of undetectable galaxies

Extendable to z>8 and potentially higher

No Cosmic Variance GRB satellites see (close to) the whole sky











8

### Interpretations

GRB and field-survey measurements of the SFRD do not agree. Why not?

 Field surveys systematically underestimate (by factor of ~5!) contributions from low-mass galaxies and high-z galaxies.

e.g., Jakobsson et al. 2012, Kistler et al. 2013

 GRBs are not uniform star-formation rate tracers: the rate depends on environment (e.g., metallicity)

e.g., Modjaz et al. 2008, Levesque et al. 2010, Graham & Fruchter 2012

#### Dramatic Metallicity Bias at z~0.5



#### Dramatic Metallicity Bias at z~0.5



#### b/I Ic's

#### Dramatic Metallicity Bias at z~0.5



#### b/l lc's

**GRBs** 

#### What about at z>1?

At high redshift (where most GRBs occur), *all* galaxies are metal "poor".

Direct metallicity measurement not usually practical (except for extremely luminous hosts)



#### Hosts at z>1



#### Hosts at z>1



#### Hosts at z>1



## Dark GRBs

#### ~25% of GRBs are dark:

e.g,Groot et al. 1998, Djorgovski et al. 2001, Cenko et al. 2009 No optical afterglow, even with early follow-up.

Can't identify host without X-ray or radio follow-up.

• Can't measure redshift without large ground-based telescopes.

#### Most are **dust-obscured**

Perley et al. 2009, Greiner et al. 2011

These hosts were not routinely followed in previous work: bias?



Palomar 60-inch follow-up of GRB 061222A ~10 minutes after burst

#### Dark GRBs & Hosts

Swift's XRT (positional accuracy ~1.5") lets us locate these bursts and find their hosts. (At least one of: Chandra, radio, and/or fast NIR follow-up usually also available to confirm position / host ID)



#### Some Dark GRB Hosts

#### GRB 080207

Svensson et al. 2012 Hunt et al. 2011

#### GRB 080607

Chen et al. 2011

#### GRB 080325

Hashimoto et al. 2011

#### GRB 051022

Castro-Tirado et al. 2007 Rol et al. 2007

#### GRB 020819

Levesque et al. 2010

#### GRB 070306

+ Rossi et al. 2012

Jaunsen et al. 2008



#### GRBs 070802, 080605, 080805, 081109, 090926B, 100621A

Krühler et al. 2011



2013-09-27

Daniel Perley

19

## **Sample Selection**



Quasi-complete sample of <u>all</u> GRBs from 2005-2009 with evidence of  $A_v > 1$  mag (from afterglow color/SED)

## **Optical Host Mosaic**



#### **Near-IR Host Mosaic**



## **Spitzer Host Mosaic**



#### **Redshift Measurement**



2013-09-27 Daniel Perley GRBs as Tracers of Cosmic Star Formation Galaxies & GRBs @ Cabo del Gata

#### **Redshift Measurement**



2013-09-27

## **SED** Fitting



## **SED** Fitting







Samples overlap considerably...



But on average, obscured hosts are more massive, star-forming, and dusty.



This produces modest changes in the population averages.



This produces modest changes in the population averages.



ey GRBs as Tracers of Cosmic Star Formation (

Looks "consistent" with field galaxy *number* distributions...

Combined sample versus field galaxies:

Grey points: field galaxies from MOIRCS deep survey (Kajisawa et al. 2011), omitting AGN (hard X-ray detection).



Weighting by SFR is essential. Null hypothesis is  $R_{GRB} \propto SFR$ .



2013-09-27

Calculate z-dependent median (mass,SFR,Av) of SFR-weighted population. Half of GRBs should be above median, half below (if  $R_{GRB} \propto SFR$ )

Combined sample versus field galaxies:



Calculate z-dependent median (mass,SFR,Av) of SFR-weighted population. Half of GRBs should be above median, half below (if  $R_{GRB} \propto SFR$ )

Combined sample versus field galaxies:







## GRBs are poor tracers of starformation at z~1,

even when dark GRBs are included.

## GRBs are poor tracers of starformation at z~1,

even when dark GRBs are included.

Not too surprising... but what about  $z \sim 2$ ?







HST IR Snapshot program

45 randomly selected opticallybright *Swift* GRBs (known z<3) observed to limit of H~25 AB mag

Tibbets-Harlow et al. in prep

VLT Optically Unbiased Host Project ("TOUGH")

69 uniformly selected *Swift* GRBs observed to limits of R~27 AB mag and K~23 AB mag

Hjorth et al. 2012 Malesani et al. in prep. Jakobsson et al. 2012

Use magnitudes and colors as substitutes for formal SED modeling.

#### Dark + pre-Swift + Snapshot + VLT



**Div**ide by star-formation quartiles, repeating analysis at  $z\sim1$  first:





#### Conclusion

#### GRBs are biased SFR tracers until at least z~2.

2013-09-27 Daniel Perley GRBs as Tracers of Cosmic Star Formation Galaxies & GRBs @ Cabo del Gata 45



#### GRBs are biased SFR tracers until at least z~2.





#### GRBs are biased SFR tracers until at least z~2.



#### Conclusion

#### GRBs are biased SFR tracers until at least z~2.



2013-09-27Daniel PerleyGRBs as Tracers of Cosmic Star FormationGalaxies & GRBs @ Cabo del Gata48

#### Conclusion

#### GRBs are biased SFR tracers until at least z~2.

![](_page_48_Figure_2.jpeg)

The number of GRBs per unit SFR can depend on (at least) two classes of variables.

• ISM chemical properties (affect stellar evolution): *Metallicity* 

• ISM physical properties (affect star formation & IMF): *UV radiation field. Gas density.* 

The number of GRBs per unit SFR can depend on (at least) two classes of variables.

• ISM chemical properties (affect stellar evolution): *Metallicity* 

• ISM physical properties (affect star formation & IMF): *UV radiation field. Gas density.* 

![](_page_50_Figure_4.jpeg)

The number of GRBs per unit SFR can depend on (at least) two classes of variables.

#### • ISM chemical properties (affect stellar evolution): *Metallicity*

should correlate with mass/Av.

• ISM physical properties (affect star formation & IMF): *UV radiation field. Gas density.* should correlate with SFR/sSFR.

![](_page_51_Figure_5.jpeg)

![](_page_52_Figure_1.jpeg)

![](_page_53_Figure_1.jpeg)

![](_page_54_Figure_1.jpeg)

#### GRBs in submillimeter galaxies?

Densest, most rapidly star-forming galaxies in the Universe are the dusty cores of SMGs. Do we find GRBs there?

#### GRBs in submillimeter galaxies?

Densest, most rapidly star-forming galaxies in the Universe are the dusty cores of SMGs. Do we find GRBs there?

![](_page_56_Figure_2.jpeg)

The number of GRBs per unit SFR can depend on (at least) two classes of variables.

• ISM chemical properties (affect stellar evolution): *Metallicity* 

should correlate with mass/Av.

• ISM physical properties (affect star formation & IMF): *UV radiation field. Gas density.* 

should correlate with **SFR/sSFR**.

Is there a regime where GRB rate variations (due to e.g. metallicity) can be ignored?

![](_page_58_Figure_2.jpeg)

![](_page_59_Figure_1.jpeg)

2013-09-27Daniel PerleyGRBs as Tracers of Cosmic Star FormationGalaxies & GRBs @ Cabo del Gata60

![](_page_60_Figure_1.jpeg)

![](_page_61_Figure_1.jpeg)

![](_page_62_Figure_1.jpeg)

![](_page_63_Figure_1.jpeg)

#### Conclusions

#### **GRBs at z<2 are not unbiased tracers of star-formation**.

Consistent with metallicity dependence. Possible secondary amplification of GRB rate in high-sSFR galaxies?

Rate variation levels off at low-mass end No further variation below  $<10^9 M_{\odot}$  @ z~1 Metallicity "threshold" at ~0.5Z\_{\odot} may be real Still viable tracers for low masses, z>3? Maybe...

Dark burst hosts are very different from unobscured hosts.

Including both unobscured and obscured bursts in correct proportion is *critical* for statistical analysis and further progress!