FORMATION AND EVOLUTION OF DUST IN GALAXIES

Christa Gall Aarhus University, Department of Physics and Astronomy

S

The bad sides:

Nuisance for inferring 'true' UV/optical properties of

e.g. galaxies, stars, SNe ...

The good sides:

Advantage for sub-mm observations of high-z galaxies (thermal dust emission)

Quick and dirty!

Dust at high redshift - Galaxies at z = 4 - 8

Finkelstein et al. 2012

Quick and dirty!

Large amounts of dust in galaxies!!

Galaxy	SFR (M _☉ /yr)	Dust mass (M _☉)	Stellar mass (M _☉)
E galaxy	0.01–0.1	10 ⁵⁻⁶	1011
Milky Way	2	5×10^{7}	2×10^{11}
LMC	0.2–0.3 (1)	2×10^{6}	10 ¹⁰
SMGs	100-1000	10 ⁸⁻⁹	1011
QSOs	≥ 1000	10 ⁸⁻⁹	1011

Quasars at high redshift: $M_d \simeq 2 - 8 \times 10^8 M_{\odot}$

(e.g., Bertoldi et al. 2003, Wang et al. 2010, Michalowski et al. 2010)

Problem also in MW, SMC, LMC: only 4-10% stellar dust

(e.g., Draine 2009, Matsuura et al. 2009, Boyer et al. 2012)

Source	Observed amount of dust	Theoretical predictions	Reference
Pair instability Supernovae		up to 25 M_{\odot}	Nozawa et al. 2003, Cherchneff & Dwek 2009, 2010
AGB stars	up to 1–5 x 10 ⁻³ M_{\odot}	up to 2 x 10^{-2} M_{\odot}	Groenewegen et al. 1998a, 1998b; Ramstedt et al. 2008 Ferrarotti and Gail 2006
RSG and WR stars	about 1% of AGB stars		
LBV	up to 0.4 $\rm M_{\odot}$		Gomez et al. 2010
Core collapse Supernovae	up to 1 $M_{\rm o}$	up to 1 $M_{\rm \odot}$	Matsuura et al. 2011, Nozawa et al. 2007

Gall et al. 2011, A&ARv

Core Collapse Supernovae

Observational evidence of dust from supernovae

Gall et al. 2011, A&ARv

SN 1987A

Life cycle of matter

Christa Gall, Aarhus University

Chemical Evolution models

$$\psi(t) = \psi_{ini}(t) \left[\frac{M_{ISM}(t)}{M_{ini}} \right]^{k}$$

IMF

$$\int_{m_{1}}^{m_{2}} m\phi(m) dm = 1$$

AGB, SN rates

$$R_{\rm i}(t) = \int_{m_{\rm L(i)}}^{m_{\rm U(i)}} \psi(t - \tau_m) \phi(m) dm$$

Injection rates

$$E(t) = \int_{m_{\mathrm{L}(i)}}^{m_{\mathrm{U}(i)}} Y(m) \psi(t - \tau_m) \phi(m) dm$$

Dust

$$\begin{split} \frac{\mathrm{d}M_{\mathrm{d}}(t)}{\mathrm{d}t} &= E_{\mathrm{d,SN}}(t) + E_{\mathrm{d,AGB}}(t) - E_{\mathrm{D}}(t) \\ E_{\mathrm{D}}(t) &= \eta_{\mathrm{d}}(t)(\psi(t) + M_{\mathrm{cl}}(t)R_{\mathrm{SN}}(t) + \Psi_{\mathrm{SMBH}}) \end{split}$$

Gas

$$\frac{\mathrm{d}M_{\mathrm{g}}(t)}{\mathrm{d}t} = E_{\mathrm{g}}(t) + \eta_{\mathrm{d}}(t)M_{\mathrm{cl}}(t)R_{\mathrm{SN}}(t) - (1 - \eta_{\mathrm{d}}(t))(\psi(t) + \Psi_{\mathrm{SMBH}})$$
Metals

$$dM_{7}(t)$$

 \mathbf{A}

$$\frac{M_{Z}(t)}{dt} = E_{Z}(t) - \eta_{z}(t)(\psi(t) + \Psi_{\text{SMBH}})$$

Chemical Evolution models

Parameters	Value	Unit	Description
M _{ini}	$5 \times 10^{10}, 1 \times 10^{11}, 5 \times 10^{11}, 1.3 \times 10^{12}$	M_{\odot}	Initial mass of the galaxy
$\psi_{ m ini}$	1×10^{3}	$M_{\odot}~{ m yr}^{-1}$	Star formation rate
Z _{ini}	10 ⁻⁶	Z_{\odot}	Initial metallicity
k	1.5		Power for the relation $\psi(t) \propto M_{\rm ISM}(t)^k$
$M_{\rm cl}$	800, 100, 0	M_{\odot}	Swept-up ISM mass per SN
M ^{crit} _{core}	15	M_{\odot}	Critical He core mass
ξsn	0.93		SN dust destruction factor
$M_{\rm SMBH}$	$3 \times 10^9, 5 \times 10^9$	M_{\odot}	Mass of the SMBH
t _{SMBH}	4×10^{8}	yr	Growth timscale for the SMBH
t _{max}	10 ⁹	yr	Maximum computed age of the galaxy
Parameters	Switch		Description
$Y_{\rm Z}, Y_{\rm E}, Y_{\rm Q}$ (for SN)	EIT08, WW95, N06, Georgy et al. (2009))	Possibilities for the SN yields
$Y_{\rm Z}, Y_{\rm E}, Y_{\rm Q}$ (for AGB)	van den Hoek & Groenewegen (1997)		Possibilities for the AGB yields
$\phi(m)$	Salpeter, mass-heavy, top-heavy, Larson 1, Larson 2		Initial mass function
SFR	evolving/constant		Additional switch for the SFR
$\epsilon_{AGB}(m, Z)$	only one case considered		Dust formation efficiency, AGB
$\epsilon_{\rm SN}(m)$	max/low		SN dust formation efficiency
ξsn	considered/not considered		SN dust destruction
BH/SN	SN when BH/no SN when BH		Possibility, if a SN occurs even a BH
			is formed or not
SMBH	considered/not considered		Growth of SMBH

Gall et al. 2011

Christa Gall, Aarhus University

Chemical Evolution models

Tuning parameters

Most important: SFR, IMF, Dust source, SN dust destruction

Good models: Need to explain observations!

Dust Productivity

Gall et al. 2011, A&ARv

$$\mu_{\rm D} = \int_{m_L}^{m_U} \phi(m) M_z(m) \varepsilon(m) dm$$

$$M_{dust} = \mu_D \times SFR \times \Delta t$$

Rapid formation of dust!

Modeling quasars at z > 6

Rapid evolution (30 Myr) with SN \sim 0.1-1 M $_{\odot}$

Gall et al. 2011A&A,525,13; 525,14

Christa Gall, Aarhus University

Christa Gall, Aarhus University

da Cunha et al. 2010

Dust mass and SFR relation

1658 SDSS

 $M_{\rm dust} \propto {
m SFR}^{1.11}$

galaxies

Dust mass and SFR relation

Hjorth, Gall & Michalowski, 2013

 $SFR \propto M_{ISM}^k$

Who will win the battle?

Supernovae or grain growth?

Or

Should we ask another question:

Is there a balance between dust production and destruction? And what could that be?

Type IIn SN 2010jl, VLT/X-shooter

Supernova extinction curve

Large grains

Dust mass estimates

Large grains are robust against destruction

Summary

How reliable are the observations?

• Dust composition, optical properties, temperature

What are the responsible sources?

- Stellar sources:
 - AGB stars are not major sources at any redshift
 - Progenitors of SNe: dust destruction critical, too little production
 - SNe: Evidence of large and efficient dust production, more observations needed
- None stellar sources:
 - Grain growth likely slow process
 - AGN outflows, winds,.... not major sources

Indication of fast and efficient process of dust formation

- Works with efficient SN dust production
- Dust destruction in the ISM still an issue
- Large grains?

THANK YOU IHANK XOO