Host Environments of Nearby Core-Collapse SN + LGRBs

Patrick Kelly UC Berkeley

Outline

- I. Long-duration gamma-ray burst (LGRB) host chemical abundances
- 2. Core-collapse SN environments from Sloan Digital Sky Survey (SDSS) galaxy data

Evidence that SN-GRBs prefer metal-poor hosts

GRB hosts have an metal-poor M-Z relation?

Tight M-SFR relation -> small transient M-Z offset

Tight M-SFR relation -> small transient M-Z offset

Modest offset, depends on diagnostic

No strong metallicity offset for CC SN

GRB 130702A Exploded in Metal-Poor Satellite

$$12 + \log(O/H) < 8.16 dex$$

log M ~ 7./

 $\Delta v < 60 \text{ km/s}$

z = 0.145

Kelly et al., ApJL, 2013

Superpositions, unresolved satellites?

Environments of Nearby Core-Collapse SN

- Uniform SDSS host imaging + spectroscopy
- Low-redshift events (z < 0.08) with accessible explosion sites
- What are the massive progenitors of the different spectroscopic species?
- Importance of chemistry, age, star-forming conditions

Mass loss through binary transfer or winds?

- Stellar winds are enhanced by metals in atmosphere
- Look for metallicity dependence of CC SN population
- Angular momentum

low-metallicity

SN Ic in brighter regions than SN Ib

SN Ic in brighter regions than SN Ib

SDSS+ Analysis

Kelly & Kirshner, ApJ, 2012

- Uniform SDSS host imaging + spectroscopy
- 520 core-collapse supernovae
 - z < 0.023 SN discovered by 'targeted' surveys (e.g., KAIT), high-mass hosts
 - z < 0.08 SN discovered by 'galaxy-untargeted' surveys (e.g., SDSS-II, PTF), sensitive to explosions in low-mass hosts

Colors and brightnesses at explosion sites

Colors and brightnesses at explosion sites

SN lb, SN lc, and SN II Host Galaxies

SN lb, SN lc, and SN II Host Galaxies

SN IIb Host Galaxies

Broad-lined SN Ic Host Galaxies

SN Ic-BL (w/o GRBs) have metal-poor hosts

Stripped-envelope SN hosts have higher specific SFRs

SN (lb+lc) hosts have more dust

Consistent w/ Extinction Estimated from Light Curves (Drout 2010)

II	Н
llb	Thin H
lb	He, No H
lc	No He, No H
Ic-BL	High ejecta vel.

Very strong dependence on environment

Summary

Kelly & Kirshner, ApJ, 2012

- Type Ic SN have exceptionally strongly star-forming, metalrich, and dusty stellar population near host centers + they expode at small offsets
- SN IIb and SN Ic-BL have exceptionally blue, metal-poor environments
 - Effect of metals on mass loss, angular momentum?