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Galaxy Formation: Why so Difficult?

Developing a coherent model for the growth of baryons in
galaxies is inherently difficult. Why?

* Highly non-linear problem
* Wide range of physical scales (LSS to Galaxies to Stars)
* Lots of marginally constrained physics like AGN- and
starburst-driven feedback, star-formation efficiency,
gas accretion/infall, merging, etc. — all highly stochastic.

Yet little direct predictive power — need observational constraints
Need to trace the physical nature of all components of the gas



Galactic and Extra-Galactic Cycles
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Main Sequence of Star formation

Evolution of the main sequence of star formation
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Fundamental question: Do galaxies simply move along MS or move on & off?

Elbaz et al. (2011); Lehnert et al. (2013, A&A submitted)



Running the Clock Backwards

MSI — assumes that forming galaxies always live on the main sequence of
star formation
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Doubtful that galaxy formation is continuous. Perhaps two
populations ...
Leitner et al. (2012)



Gas Content of distant galaxies
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Size Evolution of LBGs
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Mergers and metallicities

Mergers and metallicity evolution ...
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... can form positive metallicity

gradients ... implications for massive
GRB hosts?

Montuori et al. (2010)
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The MW as a fossil of distant galaxy



Planet Searching - good for the MW structure

Used Adibekyan etal. (2012) analysis of 1111 FGK stars ...

* R=110000

* S/N > 200 for 55% of sample

* Low rotational velocity

* Limiting distance subsample

* Low atmospheric activity

* Some mild selection: 97 stars with photo metalicities -0.5 to -1.5, b-y > 0.33
* Atmospheric parameters Teff, [Fe/H], [alpha/Fe] (alpha excludes Ca)

* parallaxes

Haywood et al. (2013)



Evolution of the disk of the MW

Divided the thick and thin disk using [a/Fe] vs. age plane. This division indicates
several interesting features of the disk ... A[a/Fe]/At changes
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Evolution of the disk of the MW

Vertical dispersion decreases with time ...
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The narrowness of the [alpha/Fe]-age relation implied efficient mixing which agrees
with the high dispersions ... the gas was well mixed both vertically and in radius



Evolution of the disk of the MW

Summary:

‘alpha enhanced disk formed over ~4-5 Gyrs

*It was chemically homogeneous as it increased in metallicity (short
crossing times)

Self-enrichment coupled to declining v-dispersion — grew thinner

*Thin disk formation “feeds” the composition of the thin disk and push
a enhanced gas into the outer disk — re-cycling of the gas was
important

- Inside-out? low r_homogeneous thick disk + high r_thin disk

- Using scale length of thick disk, mass and t_implies > __ > 0.1 M_
yr' kpc*and SFR~30 M_ yr” (outflow limit) — follows analogs

n

Next: distant galaxies — phenomenological relationship?



High SB high redshift galaxies

The nature of the warm 1onized media in distant galaxies

Large sample, 53 star-forming high redshift, z=1.3-2.7, galaxies observed with SINFONI — a
near-IR IFU on the ESO-VLT (partly SINS sample)

Selection inhomogeneous ... all intensely star forming and have rates of ~10s to 200 M__ yr'

Typically have rest-frame optical lines, Ha, [NIT]JAA6548,6583, [SIT]AA6716,6731,
sometimes [OI]A6300, and a few spectra in the blue optical with [OIII]AA4959, 5007 and
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Star-formation regulates the ISM?

Many distant galaxies have H-alpha surface brightness well above
nearby galaxies. M82-like over 10-20 kpc
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Comparison to SPH/N-body simulations...

Comparison with Simulations
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High Surface Brightnesses

Surface brightnesses are related to line widths ...
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At lower redshifts can probe lower SB.

SB limited by cosmological surface
brightness dimming (1+z)*

Starting to probe low 2___ at lower z and
hence lower energy injection rates and

perhaps constant dispersions

Le Tiran et al. (2011); Lehnert et al. (2013)



WIM Properties

High densities and moderate-high 1onization parameters or lower densities and low
1onization but thicker disks ...
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Driving to the line of stability

Interestingly, galaxies appear close to Q~1 ... perhaps coincidental
... but certainly suggestive ....
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Estimating Zgas by inverting the Schmidt-
Kennicutt relation gives similar results.

It appears that dispersions are what is

necessary to keep the gas near the line of
instability.

Lehnert et al. (2013)



Hypothesis: Schematic Presentation

Thermalized SNe + SW
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z>2: Colliding streams, dense small halos leads to
compact high density objects ... feedback decisive ...

truncates sSFR ...
Lehnert et al. (2013, A&A submitted)



sSFR (Gyr 1)

Feedback model
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Conclusions

Understanding galaxy formation and evolution is difficult.

Holism vs. reductionism.

There is no perfect approach ... but following the gas is probably good...
Lots of years of difficult research ahead ...

Don't believe everything you hear in a talk or read in a paper!
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