

Extremely metal-poor (star-forming) galaxies (in the nearby universe)

Polychronis Papaderos Centro de Astrofísica da Universidade do Porto Galaxies meet GRBs • Cabo de Gata • September 2013 Metal poor $(12+\log(O/H) \leq 8.6)$ and extremely metal-poor (XMP) galaxies $(12+\log(O/H) \leq 7.6)$

Note: recent revisions of the solar metallicity (Z_{\odot}) : 12+log(O/H) 8.76 (Caffau et al. 2008) 8.65 (Asplund et al. 2005) 8.92 (Anders & Grevesse 1989)

Sub-solar metallicity galaxies span a broad range in

 $\frac{\text{star formation rate}}{\text{specific SFR}}$, $\frac{\text{specific SFR}}{\text{SFR}}$, $\frac{\text{SFR surface density}}{\text{mean surface brightness}}$

sSFR Σ SFR $< \mu >$

Low-surface brightness, low-sSFR metal poor galaxies

High-surface brightness, high-sSFR metal poor galaxies

High-surface brightness, high-sSFR metal poor galaxies

$$\lesssim 10^{-8} \text{ yr}^{-2}$$

 $M\!\!\!\star\,\approx\,$ a few 10^8 $M_\odot;\,Z_O\simeq\,$ 8.1

• Luminous blue compact galaxies (BCGs)

- LBCGs
- CNELGs

$$M \star \, \approx \,$$
 a few 10 $^9 \ M_{\odot}; \ Z_O \, \precsim \, 8.5$

- green peas

• XMP BCDs (XBCDs)

 $M* \approx 10^7 M_{\odot}; Z_O \preceq 7.6$

Papaderos et al. (1999)

Evolution of the cosmic SFR density

Low-mass starburst galaxies (BCDs/LBCGs) account for \sim 40% of the cosmic of SFR density at z \sim 1 (Guzman et al. 1998)

Luminosity-Metallicity (T_e based) relation for emission-line galaxies

XMP BCDs (XBCDs) are very rare in the nearby Universe (<1% of the BCD population; ~15 systems identified by the end of the past millennium, cf Kunth & Östlin 2000); meanwhile ~90 further XBCDs discovered, mainly from SDSS data (e.g., Izotov et al. 2006, Papaderos et al. 2006, Guseva et al. 2009; recent compilation of literature data in Moralez-Luis et al. 2011 and Filho et al. 2013)

only very few XBCDs/XBCGs known at higher-z (e.g. Kakazu et al. 2007, Kewley et al. 2007, Atek et al. 2011)

Metallicity distribution of GRB hosts

Gehrels, Ramirez-Ruiz & Fox (2009)

SDSS 0809+1729: $M_B = -17.1$, $12 + \log(O/H) = 7.44$

Green peas (=LBCGs=CNELGs) are structurally similar to BCDs, i.e. earlier phases of BCD evolution (1-6 Gyr ago) ← Enrique's and Ricardo's presentation

(2010/12), Izotov et al. (2011)

BCDs/BCGs vs GRB hosts

MEN LONG new JJ MKN 80 MEN 400 MKN S 110W40 HAROL iE UM 46 112W70 MEN LI 11 239 30 MEN 35 10w133 MEN JO nE 0

Cairós et al. (2001)

Many GRBs are hosted by sub-L*, low-metallicity starburst environments

Gehrels, Ramirez-Ruiz & Fox (2009)

High-excitation emission lines in (extremely metal-poor) BCDs

[Ne V] λ3426 Å emission, implying the presence of hard ionizing radiation with λ<228 Å (≙7.14 Ryd)
Also other high-excitation lines detected (e.g. [Fe V] λ4227 Å) along with
strong He II λ4686 Å (≈ 5% of Hβ intensity)
Lyα equivalent width of ~80 Å (!) (Thuan & Izotov 1997)

See also presentations by D. Szesci, E. Perez-Montero, C. Kehrig, R. Amorin, D. Miralles and M. Pakull

Properties of the HI component in BCDs

mass ratio: typically $M_{HI} = (0.1-1) \times 10^9 \text{ M}_{\odot}$, M_{Gas}/M_T : 0.3-0.9, $M_T/L_R = 2-6$

 $rac{\mathrm{HI\ radius}}{\mathrm{optical\ radius}}\sim 3\dots 10$

Gas fraction as a function of absolute magnitude

typically M(HI+He)/M(*+gas) > 0.4

Geha et al. (2006)

Comparison of the radial HI surface density distribution in BCDs and quiescent (low-SFR, low-sSFR) late-type dwarfs (dwarf irregulars - dls)

BCDs are more compact than dls with respect to their HI distribution

 $\Sigma_{\rm HI}({\rm BCDs}) \sim 5 \times \Sigma_{\rm HI}({\rm dIs})$

See also Taylor et al. (1995), Simpson & Gottesmann (2003)

Structural properties of BCDs & BCGs

 $M_{\rm B}$ =-13.9 mag

P25, E25: isophotal radius of the star-forming and LSB component

line-of-sight intensity contribution of the SF component: <40% at P₂₅, 4% at E₂₅

Carolina's presentation 4

Starburst activity in low-mass galaxies occurs preferentially in compact, high-stellar density (ρ_*) hosts

• Central ρ_{\star} of the BCD host galaxy is $\sim 10 \times$ higher than in (low-sSFR) dls

The density of the local stellar background (and the form of the gravitational potential it produces) is one of the parameters regulating star-forming activity in <u>triaxial low-mass late-type galaxies.</u>

Henize 2-10: $H\alpha$ supershells and large-scale gas outflows

a) mechanical luminosity as a function of time for a Star Formation Rate of 1 M_{\odot} yr⁻¹ Luminosity Power at t=10⁷ yr : 4×10⁴¹ erg s⁻¹ (total energy injected into the ISM: 4.5×10⁵⁵ erg)

b) observations: gigantic bipolar outflow of hot and metal-enriched gas from the starburst component, expanding with velocities of ≥ 200 km s⁻¹ into the ambient interstellar medium.

Henize 2-10: $H\alpha$ supershells and large-scale gas outflows

X-ray contours (ROSAT HRI) overlaid with a continuum-subtracted $H\alpha$ map.

XMM-Newton X-ray spectrum (0.25-6 keV)

- Thermalization of the ISM (hot (10⁷ K) X-ray emitting gas)
- Expansion into the ambient ISM and ejection into the halo (and possibly beyond): galactic outflows
- Chemical enrichment of the interstellar and intergalactic medium.
- Lyman continuum photon escape and the reionization of the universe

BCDs: starburst-driven mass ejection into halo

NGC 1569

Super-Star Clusters

Chronology of a starburst in a dI/BCD

Extremely metal-poor (XMP) BCDs: XBCDs Young galaxy candidates in the nearby universe?

Papaderos et al. (2002)

Guseva, Papaderos, Izotov et al. (2004)

Gas-phase metallicity: $7.0 \leq 12 + \log(O/H) \leq 7.6$

- No evidence for a dominant old stellar population (>50% of M* formed in the past 1-3 Gyr)
- Irregular morphology, with a a remarkably large fraction of cometary systems

Thuan et al. (1997), Papaderos et al. (1998)cke et al. (2001)

Papaderos et al. (1999,2007)

Morphological comparison of **BCDs** and **XBCDs**

Papaderos et al. (2008)

BCDs

See, e.g. Lehnert et al. (2013) and Matt's presentation \rightarrow

Pairwise XBCD formation Example: the XBCD pair SBS 0335-052 E&W

Pustilnik et al. (2001)

SBS 0335-052: HI cloud with a projected size of 70 $\times 20$ kpc; mass of $\sim \! 10^9 \ {\rm M_{\odot}}$

SBS 0335-052 E: formation through propagating star formation

- Study of the V-I color and spatial distribution of stellar clusters using HST data
- galaxy formation in a propagating mode from NW to SE with a mean velocity of ~20 km/s.

HST/WFPC2, V band

HST/WFPC2, I band, unsharp masked

Strong & extended nebular emission in XBCDs Example: I Zw 18 (the prototypical XBCD)

2D subtraction of nebular line emission using HST WFPC2 [OIII]5007 and H α narrow band images (Papaderos et al. 2002) leads to complete removal of the lower-surface brightness (LSB) envelope of I Zw 18

> The LSB envelope of I Zw 18 is entirely due to extended nebular emission

Very deep HST ACS imaging down to $\mu \simeq 30 \text{ mag/arcsec}^2$ (Papaderos & Östlin 2012) shows that the nebular envelope of I Zw 18 reaches out to R \simeq 2.6 kpc

The nebular halo of I Zw 18 extends out to 16 exponential scale lengths of the stellar component

and contributes $\geq 1/3$ of the total R band luminosity

Papaderos & Östlin (2012)

I Zw 18: surface brightness and color profiles

Papaderos & Östlin (2012)

V-R and B-R relatively red (0.5...0.6 mag) whereas V-I and R-I extremely blue (-0.7 and -1.2 mag)

There is no stellar population, regardless of SFH, age and metallicity, that can reproduce the observed combination of colors in the LSB envelope of I Zw 18.

Such colors can readily be explained by nebular emission.

Extended nebular emission in high-sSFR galaxies has an <u>exponential</u> outer slope

An exponential profile in a distant high-sSFR galaxy is not compeling evidence for an evolved underlying stellar disk.

Exponentiality is (probably) also a generic property of Lyman α halos

