THE RADIAL STRUCTURE OF M/L:

CALIFA RESULTS

Rosa González-Delgado Enrique Pérez Jiménez Roberto Cid Fernandes (UFSC) & the CALIFA collaboration

HISTITUTO de ASTROPASICA CA

"Galaxies meet GRBs at Cabo de Gata" • September 24, 2013

THE EVOLUTION OF GALAXIES RESOLVED IN SPACE & TIME

CALIFA RESULTS

Rubén García-Benito (IAA-CSIC)

Rosa González-Delgado Enrique Pérez Jiménez Roberto Cid Fernandes (UFSC) André Amorim (UFSC) Sebastián F. Sánchez (P.I.) & the CALIFA collaboration

"Galaxies meet GRBs at Cabo de Gata" • September 24, 2013

Paleontology of galaxies

Paleontology of galaxies

SFH: Spectral fitting vs CMD García-Benito & Pérez-Montero (2012)

Galaxy spectra: Stars + Gas + ...

Stellar (optical) spectra

λ [Angstroms]

The method

Decomposing galaxy spectra

The method

Dust

Decomposing galaxy spectra

$L_{gal}(\lambda) = \sum_{t,z} M_{SSP}(t,Z) \times SSP(\lambda;t,Z) \times e^{-\tau(\lambda)}$

Observables: Full spectrum SFH: Mass or light fractions Spectral Base

Galaxy evolution studies in CALIFA:

Cosmic evolution of the stellar population properties in galaxies as a function of the galaxy mass, morphology and environment

* The Evolution of Galaxies Resolved in Space and Time: A View of Inside-out Growth from the CALIFA Survey. Pérez, Cid Fernandes, González Delgado García-Benito et al, 2013, ApJL, 764, L1

* Resolving the galaxies in time and space: I: Applying STARLIGHT to CALIFA data cubes. Cid Fernandes, Pérez, García-Benito, González Delgado et al, 2013, A&A, 557, A86

* Resolving the galaxies in time and space: II: Uncertainties in the spectral synthesis of data cubes. Cid Fernandes, González Delgado, García-Benito, Pérez, et al, 2013, A&A, accepted

* The spatially resolved SFH of galaxies in the CALIFA survey: The radial structure of stellar mass surface density and ages González Delgado et al, 2013, A&A, submitted

Processing & Analysis pipelines

CALIFA 900

S/N ~ 20

CALIFA 00 I

CALIFA 277

Processing & Analysis pipelines

Processing & Analysis pipelines

PyCASSO Products

PyCASSO Products

PyCASSO Products

log y [yr]

NGC 2623 (merger)

Stacking spectra

Stacking by galaxy mass

log lookback time (yr)

Inside-out mass growth

Central core of galaxies (present) stellar mass of \sim 7x10¹⁰ Msun \rightarrow maximum relative assembly rate

Critical mass at which the conversion of the mass halo into star is maximum (occurs when the feedback effects by AGN and star formation are less efficient)

Averaged vs properties at HLR

Mass Radius vs Light Radius

Integrated vs resolved stellar properties

Is SFH driven by mass or local stellar mass surface density?

Why M/L with CALIFA?

Theoreticians: M 🖙 L

Why M/L with CALIFA?

"Observed" bands

Radial M/L_{Dered} - Morphology

Radial M/L_{Dered} - Morphology - Obs vs Syn

Radial M/L_{Dered} - Mass

M/L - Color

Summary & Conclusions

* We have analyzed ~200 CALIFA galaxies, which is so far the largest integral field data set of complete galaxies that are well distributed in the color magnitude diagram, from the blue (disk) to the red (bulge) sequence

* Radial profiles of ages, metallicities, and mass assembled grow curves suggest that galaxies with Mass > 10^{10} (M_o) grow inside-out

* There is a critical mass at which the conversion of the mass halo into star is maximum, it occurs when the feedback effects by AGN and star formation are less efficient

* The local stellar mass surface density drives the SFH of galaxies disks, but in bulge dominated galaxies total stellar mass is a more fundamental property.

* Averaged and integrated galaxies properties are well correlated and are well represented by the galaxy properties at I HLR

THE EVOLUTION OF GALAXIES RESOLVED IN SPACE & TIME + THE RADIAL STRUCTURE OF M/L

CALIFA RESULTS

Rubén García-Benito

"Galaxies meet GRBs at Cabo de Gata" • September 24, 2013

Radial M/LDered - Mass & C

Radial M/LDered - Mass & C

$C = r_{90} / r_{50}^{P}$

Radial M/LDered - Mass & C

$C = r_{90} / r_{50}^{P}$

