The X-ray absorption in GRB afterglows

Darach Watson

DARK Cosmology Centre Niels Bohr Institute University of Copenhagen

Overview

- Downturn at low energies deviating from a power-law
- Very similar to photoelectric absorption observed in the galaxy
- Fit well by photoelectric absorption by metals at host redshift
- Values well above Galactic

Overview

- Downturn at low energies deviating from a power-law
- Very similar to photoelectric absorption observed in the galaxy
- Fit well by photoelectric absorption by metals at host redshift
- Values well above Galactic

* Galama and Wijers, in average.; Watson et al. single afterglow; de Pasquale/Gendre/Stratta et al., Campana et al., Evans et al. samples

What causes the Xray absorption?

- Photoelectric absorption
- Inner shells of metals dominate
- He, C, O, Fe, Si, S etc.
- Relatively insensitive to ionisation state or phase (i.e. in normal situations, X-rays see almost all metals)
- Use column density in hydrogen as a useful proxy, but actually, insensitive to hydrogen

PHOTO-ELECTRIC ABSORPTION

What causes X-ray absorption in GRBs?

HII regions — helium

Redshift dependence

- Little redshift information in low-res X-ray spectra
- Get redshifts from optical
- But! Inferred absorption strongly redshift dependent:
- $N_{H_X}(z) \approx (1+z)^{2.5} N_{H_X}(0)$

- Oddity—X-ray absorption rises with redshift. Why?
- Expect detectability threshold to rise with redshift $[N_{H_X}(z) \approx (1+z)^{2.5} N_{H_X}(0)]$
- But missing low redshift, high absorption GRBs

- Oddity—X-ray absorption rises with redshift. Why?
- Expect detectability threshold to rise with redshift $[N_{H_X}(z) \approx (1+z)^{2.5} N_{H_X}(0)]$
- But missing low redshift, high absorption GRBs

- Oddity—X-ray absorption rises with redshift. Why?
- Expect detectability threshold to rise with redshift $[N_{H_X}(z) \approx (1+z)^{2.5} N_{H_X}(0)]$
- But missing low redshift, high absorption GRBs

- Oddity—X-ray absorption rises with redshift. Why?
- Expect detectability threshold to rise with redshift $[N_{H_X}(z) \approx (1+z)^{2.5} N_{H_X}(0)]$
- But missing low redshift, high absorption GRBs

- X-rays unbiased by dust
- But redshifts from optical
- Bias obtaining redshifts

- X-rays unbiased by dust
- But redshifts from optical
- Bias obtaining redshifts

- X-rays unbiased by dust
- But redshifts from optical
- Bias obtaining redshifts

- X-rays unbiased by dust
- But redshifts from optical
- Bias obtaining redshifts

- X-rays unbiased by dust
- But redshifts from optical
- Bias obtaining redshifts

- X-rays unbiased by dust
- But redshifts from optical
- Bias obtaining redshifts

No N_{HX} - A_V correlation

Watson & Jakobssen 2012

Dark Cosmology Centre

• Evolving $N_{\rm H_X}/A_V$

N_{H_X} - A_V correlation ?

Evolving N_{H_X} - A_V correlation

- Correlation between N_{H_X} and A_V at z < 1, 1 < z < 2, and 2 < z < 4.
- But mean ratio rises with redshift

 $N_{\rm H_X} - A_V$ correlation confirmed by Covino et al. 2013

(SUB-)Conclusion

- Dust produced more effectively from metals at lower redshifts? Unlikely
- Still do not understand:
 - Where is the X-ray absorption?
 - Its real column density distribution
 - Ionisation state
 - Abundances

Proposals

- Molecular cloud
- Intrinsic curvature
- Underestimated Galactic
- Intervening neutral absorbers
- Warm/hot IGM

- Intrinsic curvature
- Underestimated Galactic
- Intervening neutral absorbers
- Warm/hot IGM

- Intrinsic curvature
- Underestimated Galactic
- Intervening neutral absorbers
- Warm/hot IGM

- Underestimated Galactic
- Intervening neutral absorbers
- Warm/hot IGM

- Underestimated Galactic
- Intervening neutral absorbers
- Warm/hot IGM

- Intervening neutral absorbers
- Warm/hot IGM

- Intervening neutral absorbers
- Warm/hot IGM

What's left

- Progenitor wind?
 - GRB destroys dust and strips gas out to large radii
 - Mass is too large to be progenitor wind
- HII region?
 - Previous problem not enough HI observed
 - But if HI ionised by stars: He can absorb closer to the GRB than anything else
 - (H ionised by stars confirmed by Krongold & Prochaska 2013)

Signatures of He absorption

- No clear difference in low-res spectra between metal rich gas and He
- HII regions have higher column densities in dense environments => more likely to intersect a high density neutral cloud => approx. correlation between N_{Hx} and gas (not metals)
- N_{Hx} N_{HI} correlation (confirmed by Covino et al. 2013)
- N_{Hx} A_V correlation should change with redshift as mean cosmic metallicity drops.

Evolving N_{H_X} - A_V correlation

- Correlation between N_{H_X} and A_V at z < 1, 1 < z < 2, and 2 < z < 4.
- But mean ratio rises with redshift

Conclusions

- The X-ray absorption in long GRB afterglows is primarily produced by He in the natal HII regions the stars that explode as GRBs.
- The GRB is powerful enough to destroy the dust and strip the metals associated with this gas
- The change in the N_{Hx}/A_V ratio with redshift is largely due to the change in cosmic metallicity
- Using information on the luminosity of a GRB and its N_{Hx} it should be possible to place limits on the sizes and densities of the HII regions of massive starforming regions across a very large redshift range

END