"Ionizing stellar population in the starburst NGC 3310"

Daniel Miralles Caballero Universidad Autónoma de Madrid (UAM)

A. Díaz, F. Rosales-Ortega et al.

Hubble Heritage

Galaxies meet GRBs – Cabo de Gata – 25 September 2013

* NGC 3310 – @ 16 Mpc. Evidence of galactic cannibalism

Daniel Miralles Caballero

* NGC 3310 – WR features observed in the past

- Strong constraints on stellar population models

Daniel Miralles Caballero

* NGC 3310 – WR features observed in the past

- WR – GRB connection at moderate redshifts

Daniel Miralles Caballero

* Goals of the study

- Gas mixing (metallicity gradient)
- Impact of the merger in SF and galaxy evolution
- Characterize the ionizing stellar population
- Spatially resolved WR population in the disk of NGC 3310
- Predictions from models and observations of WR features

IFU data & sample of HII reg

* PPAK Integral Field Spectroscopic (IFS) data

- Full spatial coverage of the disk
- PINGs program (Rosales-Ortega +10)

IFU data & sample of HII reg

* Integral Field Spectroscopic (IFS) data

- Full spatial coverage of the disk
- PINGs program (Rosales-Ortega +10)

Daniel Miralles Caballero

IFU data & sample of HII reg * Sample of HII regions - HII EXPLORER (Sánchez +12), 99 HII regions identified 60 60 I(Hα) map Star-forming regions $12 + \log(O/H) \sim 8 - 8.4$ 40 40 $r \sim 200 \text{ pc}$ 20 20 Δδ (arcsec) 0 1 -20 -20 -40 -40 -60 -60 60 40 20-20 -40 -60 60 -20 -40 -60 40 20 0 0 **∆RA (arcsec)** ΔRA (arcsec)

Daniel Miralles Caballero Galaxies meet GRB September 25

UNIVERSIDAD

AUTONOMA

* Gas-star decoupling method

- STARLIGHT (Cid-Fernandes +04)
- PYCASSO library (Cid-Fernandes +05), 1Myr 17Gyr

Daniel Miralles Caballero

* Ionization conditions

- Line ratios sensitive to log u, n_e, T_e, Z, N/O, etc

- 7 zones

Daniel Miralles Caballero

* Ionization conditions. CLOUDY fit

- v 10.0, Ferland +98
- Constraints:
 - 1. Line ratios
 - 2. log H β luminosity ranges \rightarrow 37.5-38.5, 38.8-39.8
 - 3. log EW (H β) ranges $\rightarrow 1.35$ -1.65, 1.6-2.1, 2.05-2.35

Daniel Miralles Caballero

* Ionization conditions. CLOUDY fit

- v 10.0, Ferland +98
- Constraints:
 - 1. Line ratios
 - 2. log H β luminosity ranges \rightarrow 37.5-38.5, 38.8-39.8
 - 3. log EW (H β) ranges $\rightarrow 1.35$ -1.65, 1.6-2.1, 2.05-2.35

- Output:

- 1. Age of the ionizing population $\rightarrow \tau = 3 5.5$ Myr
- 2. Absorption by dust grains $\rightarrow f_d = 1.3 4 \parallel \parallel$
 - If $f_d \sim 2 \rightarrow$ Half of the photons are absorbed

* CLOUDY fits & STARLIGHT

1. Subtact light from "old" non-ionizing ($\tau > 15$ Myr) populations as obtained with STARLIGHT

2. Multiwavelenght fitting using:
a) Imaging from UV to IR
b) POPSTAR models (Mollá +09; Martín-Manjón +10): age binning 0.2-0.3 Myr & includes nebular emission

Daniel Miralles Caballero

* Multiwavelength analysis

- XMM UV OM + SDSS + broad band imaging obtained with our spectra (8 broad band filters)

Daniel Miralles Caballero

* Multiwavelength analysis

- XMM UV OM + SDSS + broad band imaging obtained with our spectra (8 broad band filters)

- H α , H β and Ews
- Chi square minimization

$$\chi^2(Z,\tau,A_V,m_\star) = \sum_N \frac{(f_{\rm obs} - f_{\rm model})}{\sigma_{\rm obs}^2}$$

* Combination with CLOUDY results

- χ^2 minimization varying H α , H β & Ews according to derived range of f_d for each HII region

Absorption by dust grains important in HII regions! (Pérez-Montero & A. I. Díaz 07, Pérez-Montero +10, García-Benito & Pérez-Montero 12)

Daniel Miralles Caballero

* Combination with CLOUDY results

- χ^2 minimization varying H α , H β & Ews according to derived range of f_d for each HII region

Daniel Miralles Caballero

UNIVERSIDAD AUTONOMA DEMADRID

Daniel Miralles Caballero

* Multiple line fitting

- Between 5 and 6 broad and fixed narrow components

1. Start with 4686 broad + narrow, 4658

2. Add components [FeIII], [ArIV], etc., lines; until residual peak < 4rms

3. Typical relative uncertainties 10-40%

Daniel Miralles Caballero

* Multiple line fitting

- Between 5 and 6 broad and fixed narrow components

Daniel Miralles Caballero

* WR ratios

 $x = 12 + \log(O/H)$

- Number of O stars:

Correction for other O sub-types

- HeII 4686, no red bump (WC/WO) or OVI 3818 (WO) \rightarrow WN stars mainly
- Absence of NIII 4097 & NIV 4605-20 (WNE) \rightarrow Mainly WNL
- Cannot discard presence of other sub-types

López-Sánchez & Esteban 10

 L_{WNL} (HeII 4686) = $(-5.430 + 0.812x) \times 10^{36} \text{ ergs}^{-1}$

30 - 500 WNL per region

 $N_{O} = \frac{Q_{0}^{\text{Total}} - N_{\text{WNL}} Q_{0}^{\text{WNL}}}{\eta_{0} Q_{0}^{\text{O7V}}}$

Average luminosities WNL

HeII λ 4686 (×10 ³⁵ erg s ⁻¹)	Z (range)	Ref.
32	Z _o /3-Z _o /2	[1]
17	Z _☉ /2	[2]
16	Z_{\circ}	[3]
20-26	$Z < Z_{\odot} - Z \ge Z_{\odot}$	[4]
2-16	$Z_{\odot}/50 - Z_{\odot}$	[5]
4-25	$Z < Z_{\odot}/5 - Z \geqslant Z_{\odot}/5$	[6]

Notes. References: [1] Smith (1991); [2] Vacca & Conti (1992); [3] Schaerer & Vacca (1998); [4] Guseva et al. (2000); [5] Crowther & Hadfield (2006); [6] Brinchmann et al. (2008).

Correction for WR contribution

Daniel Miralles Caballero

* WR ratios

Daniel Miralles Caballero

* Stellar population models

- POPSTAR models

Evolutionary tracks well below observed values (factors > 2)

Daniel Miralles Caballero

* Stellar population models

- Models with binaries (2/3 interacting binaries) and fast rotation

Daniel Miralles Caballero

* Stellar population models

- Models with binaries (2/3 interacting binaries) and fast rotation

Additional processes necessary in models

Daniel Miralles Caballero

* Binary fraction ionizing population NGC 3310
- About ½ of HII regions with WR features → X-ray counterpart

Daniel Miralles Caballero

* Binary fraction ionizing population NGC 3310

- About $\frac{1}{2}$ of HII regions with WR features \rightarrow X-ray counterpart
- $L_{2-10 \text{ keV}} \sim 3 \times 10^{40} \text{ erg s}^{-1} (\text{HMXB})$

Daniel Miralles Caballero

* Binary fraction ionizing population NGC 3310

- About $\frac{1}{2}$ of HII regions with WR features \rightarrow X-ray counterpart
- $L_{2-10 \text{ keV}} \sim 3 \times 10^{40} \text{ erg s}^{-1} (\text{HMXB})$

If $M \sim 2x10^7 M_{\odot}$ and $\tau = 3 - 5 Myr$

Cerviño +02 models

$$\begin{split} f_b &= 0 \to L_{2\text{-}10 \text{ keV}} \sim 10^{39} \text{ erg s}^{-1} \\ f_b &= 0.5 \to L_{2\text{-}10 \text{ keV}} \sim 3 \text{ x } 10^{40} \text{ erg s}^{-1} \end{split}$$

Binarity matters! (Sana, de Mink+12)

Daniel Miralles Caballero

Summary & conclusions

- Almost 100 HII regions sampled along the disk of NGC 3310

- Different ionization conditions sampled

- Ionization + UV – optical – IR imaging \rightarrow Better constraints of the age and the mass of the ionizing populations and necessity of absorption of UV photons (25-60%), M ~ 10⁴ – 6 x 10⁶ M₀, $\tau \sim 2.5$ – 5 Myr

- 18 HII regions with clear WR features, distributed along the circumnuclear and on the arms

- Up to several hundreds of NWR stars in some regions

- Fluxes, EWs and WR to O ratios inconsistent in some cases with models within factors of 2-3

- Additional processes (binary fraction, γ escape, ect) needed in models
- X-ray data \rightarrow Binary fraction $f_{b} \sim 0.5$

Thanks for your attention

* Gas-star decoupling method

- STARLIGHT (Cid-Fernandes +04)
- PYCASSO library (Cid-Fernandes +05), 1Myr 17Gyr
- Nebular spectrum can be important!

Daniel Miralles Caballero

* Gas-star decoupling method

- STARLIGHT (Cid-Fernandes +04)
- PYCASSO library (Cid-Fernandes +05), 1Myr 17Gyr
- STARLIGHT output

Daniel Miralles Caballero

* Metallicity gradient

Daniel Miralles Caballero

* CLOUDY fits & STARLIGHT

Typical ages ionizing population STARLIGHT → τ = 1 Myr
1. Nebular emission not included in templates
2. A few "young" (τ < 15 Myr) templates
3. Only optical spectral range

* Ionization conditions

- Line ratios sensitive to log u, n_e, T_e, Z, N/O, etc

- 7 zones

- Mild or inexistent correlations

Daniel Miralles Caballero

* Multiwavelength analysis

- XMM UV OM + SDSS + broad band imaging obtained with our spectra (8 broad band filters)

- H α , H β and Ews

- Chi square minimization

$$\chi^2(Z,\tau,A_V,m_\star) = \sum_N \frac{(f_{\rm obs} - f_{\rm model})}{\sigma_{\rm obs}^2}$$

Daniel Miralles Caballero

* Multiwavelength analysis

- XMM UV OM + SDSS + broad band imaging obtained with our spectra (8 broad band filters)

- H α , H β and Ews
- Chi square minimization

$$\chi^2(Z,\tau,A_V,m_\star) = \sum_N \frac{(f_{\rm obs} - f_{\rm model})}{\sigma_{\rm obs}^2}$$

Daniel Miralles Caballero

* Combination with CLOUDY results

- χ^2 minimization varying H α , H β & Ews according to derived range of f_d for each HII region

Ionizing population, up to a few
% of the total stellar population
(Alonso-Herrero +01,
Hagële +09, Pérez-Montero +10)

Daniel Miralles Caballero

* HII regions with WR features

- No clear presence of red bump

Daniel Miralles Caballero

Daniel Miralles Caballero