How should the progenitiors of type II-p Sye look Ilke? Red supergiantis in clusters

Universitat d'Alacant Universidad de Alicante

$41-3$ Cabo ic Gata

 Dept. de Fisica, Engiryeria de Sistemes i Teoria del Senyal Dpto. de Fisica, Ingenieria de Sistemas y Teoria de la Señal

- Red supergiants as SN progenitors
observation vs. theory
- Constraints from clusters

Evidence for substantial evolution during the RSG priase

- The AGB boundary

Can we tell which stars will explode?

Exploding RS Gs

Core-Collapse SN Fractions
Distribution of supernova types
(Smith et al. 2011, MNRAS 412, 1522)
A possible scenario for supernova progenitors (Smith et al. 2011, M NRAS 412, 1522)

Lower initial mass for a supernova progenitor

$$
8.5^{+1}{ }_{-1.5} M_{\odot}
$$

Observed supernova progenitors
(Smartt 2009, ARA\&A 47, 63)

A Smartt SJ. 2009.
R Annu. Rev. Astron. Astrophys. 47:63-106

Exploding RS Gs

Core-Collapse SN Fractions
Distribution of supernova types
(Smith et al. 2011, MNRAS 412, 1522)

This may shift up a bit because of circumstellar reddening (W almswell \& Eldridge 2012, MNRAS 419, 2054)

(Poelarends et al. 2008, ApJ 675, 614)

Strong dependence on

 assumptions but:- $\sim 9 M_{\odot}$ for an EC SN
- $\sim 10 M_{\odot}$ for a CC SN

Lower initial mass for a supernova progenitor

$$
8.5^{+1}{ }_{-1.5} M_{\odot}
$$

Observed supernova progenitors
(Smartt 2009, ARA\&A 47, 63)

A Smartt SJ. 2009.
R Annu. Rev. Astron. Astrophys. 47:63-106

- Distance from radio parallaxes (Zhang et al. 2012, ApJ 744, A23)
- Size from VLTI interferometry

W ittkwoski et al. 2012, A\&A 540, L12

Late \mathcal{M} Supergiants

- Evidence for heavy mass loss (W ing 2009, Verheyen+2012)
- S Per M 4la/lab \rightarrow M 7 (Humphreys/Fawley)
- W Per M3la \rightarrow M5 (Humphreys/Fawley)
- NM L Cyg M 6la?
- VX Sgr M 4la \rightarrow M 10la
- VY CM a M4-5Ia
- AH Sco M 5la (Humphreys)

$\mathcal{V d} \mathcal{B H} 222$

M1.5Iab
MOIab
M1Iab

M arco et al., in preparation

Stepfenson 2

Second cluster of red supergiants found towards the base of the Scutum Arm

Concentration of >26 RS Gs
(Davies et al. 2007, ApJ 671, 781)

Implied mass $>5 \times 10^{4} \mathrm{M}_{\odot}$

Family portrait

D1 M6-7I
D2 M7/7.5I
D3 M5I
D4 M5I
D5 M5I
D6 M3.5Iab
D9 M3.5Iab
D10 M2Iab
D11 M3.5Iab
$\begin{array}{ll}\text { D13 M2Iab } & \text { D26 M2Iab } \\ \text { D14 ~M2.5I } & \text { D27 early MI } \\ \text { D15 M1.5Iab } & \text { D29 ~M0I } \\ \text { D16 M1-1.5Iab } & \text { D30 ~M1I } \\ \text { D17 M1.5Iab } & \text { D31 M1.5Iab } \\ \text { D18 M1-1.5Iab } & \text { D49 embedded } \\ \text { D19 M1Iab } & \text { D52 ? } \\ \text { D20 M1.5Iab } & \text { D72 ? } \\ \text { D21 ~M1.5I } & \\ \text { D23? } & \end{array}$

Negueruela et al. 2013, EAS 60, 279

n Deguchi et al. (2010, PASJ 62, 391) searched for masers associated with the stars. They only detect 3 objects.

See also Verheyen et al. (2012, A\&A 514, A36)

- D1=IRAS 18363-0607
- K =2.9
- M 6-7I

- D49 is a very embedded source $E(J-K) \approx 7$, of which around 4 mag are circumstellar, implying

$$
A_{V} \sim 25 \mathrm{mag}
$$

Red supergiants in clusters and associations (Levesque et al. 2005, A pJ 628, 973)

- There must be several observational biases acting here.
- García-H ernández et al. (2007, A\&A 462, 711) suggest that the most massive Galactic AGB stars are late-M OH/IR stars with Rb overabundance.

$$
M_{K} \approx-9.5
$$

Dorda et al., in preparation

$$
\begin{aligned}
& \text { What are } \\
& \text { these tfings ? } \\
& \text { Theoretical models for } \\
& \text { LMC sources suggest } \\
& \text { these are } \sim M_{\odot} \text { stars just } \\
& \text { before the first thermal } \\
& \text { pulse. } \\
& \text { - Later, they become more } \\
& \text { luminous, but obscured by } \\
& \text { dust. } \\
& \text { Ventura et al. 2000, A\&A 363, } 605
\end{aligned}
$$ pulse. dust.

- Based on this, García-Hernández et al. (2013, A\&A 555, L3) suggest that the Milky-Way equivalents are super-Li-rich late-M giants.

Dorda et al., in preparation

NGC 6067

NGC 6649

HR diagram of NGC 6649
(M arco et al. 2007, A SPC 361, 388)

Age $\approx 60 \mathrm{Myr}$

$$
M \sim 7 \mathrm{M}_{\odot}
$$

NGC 2345

HR diagram of Be 55
(Negueruela \& Marco 2012, AJ 143, 46)

Be 55

$$
M \sim 7.3 \mathrm{M}_{\odot}
$$

Age $\mathbf{5 0} \pm \mathbf{1 0 ~ M y r}$ (Negueruela \& M arco 2012, AJ 143, 46)

Summary

- The detected SN progenitors suggest that objects with masses as low as $7 M_{\odot}$ can explode.
- The separation of RSGs from AGB stars is very difficult.
- Evidence from clusters very strongly hints at a bimodal distribution in RSG spectral types, with a majority of the population in the MO-2 range and a few objects at later types.
- Late-M RSGs show evidence of heavy mass loss, and there are indications that these are the most evolved objects.
- Do stars explode as RSGs or do they loop bluewards?
- No young open cluster contains the kind of object observationally identified as a very massive AGB star.

How should the progenitors of type II-p Sye look Ilke? Red supergiantis in clusters

Universitat d'Alacant Universidad de Alicante

$41-3$ Cabo ic Gata

 Dept. de Fisica, Engiryeria de Sistemes i Teoria del Senyal Dpto. de Fisica, Ingenieria de Sistemas y Teoria de la Señal