Understanding the X-ray emission of close massive binaries: The case of WR 20a

Gabriela Montes (UCSC) Enrico Ramirez-Ruiz (UCSC) Fabio de Colle (UNAM) Reachel Striker (UCSC)

> Galaxies meet GRBs at Cabo de Gata September 23, 2013

Introduction

• WR stars are the progenitor systems of broad-line type Ib/c supernova and GRBs.

Treast 201 Hog So to Bat O an Barrie State and the Bran In Ba Bisting

- WR20a could thus be representative of GRB progenitor system.
- For GRBs, understanding the wind initiation region is key as it would determine the shock break out observational properties.
- Rotation is thought to be a key ingredient, and binarity maybe essential.

WR 20a (WN6ha+WN6ha)

$M = 82.7 \pm 5.5 \,\mathrm{M}_{\odot}$ $\mathrm{R} = 19.3 \pm 0.5 \,\mathrm{R}_{\odot}$

 $P = 3.686 \pm 0.01 \text{ days}$ $a = 53.0 \pm 0.7 \text{ R}_{\odot}$ $i = 74^{\circ}.5 \pm 0^{\circ}.2$

(Rauw et al. 2005)

X-ray emission in massive stars

•Wolf-Rayet (WR) and O type stars are well known X-ray emitters.

 In single stars X-rays are produced due internal wind instabilities heating the plasma up to 106 (<1keV).

•O-type stars follows an empirical relation: $\log(L_X/L_{\rm bol}) \sim -6.9$

X-ray Emission from Massive Binaries (WR20a)

- Two temperature components: softh (0.3-0.9 keV) and hard (1.3-2keV).
- X-ray luminosity exceeding the empirical relation.

(Nazé et al. 2008)

X-ray Emission from Massive Binaries (WR20a)

- Hard emission component produced within a Wind-wind Colliding Region (WCR).
- X-ray luminosity dominated by the WCR component.

(Credit Andre Viera, IAG-USP Brazil; Pittard 2003)

Variability: Due to changes in the separation for eccentric orbit and absorption effects

Lightcurves have been constructed mostly for wide systems, e.g. WR 140:

(from from http://asd.gsfc.nasa.gov)

Models for close systems predict also variability (Pittard & Parkin 2010)

X-Ray Lightcurve for WR 20a

WR 20a appears slightly more X-ray luminous and softer during the optical eclipse, opposite to what has been observed in other binary systems.

Nazé et al. (2008)

2D-HD Simulations with WR 20a parameters

PROPERTIES OF WR20A AS DERIVED BY 1: BONANOS ET AL. (2004), 2: RAUW ET AL. (2005), AND 3: NAZÉ ET AL. (2008)

Parameter	Value	Reference
Spectral Type	WN6ha+WN6ha	1
\dot{M} (M _{\odot})	$82.7 \pm 5.5 + 81.9 \pm 5.5$	1
R_{\star} (R _O)	19.3 ± 0.5	1
$T_{\rm eff}$ (K)	43000 ± 2000	1
\dot{M} (M _{\odot} yr ⁻¹)	8.5×10^{-6}	1
$v_{\infty} (\mathrm{km}\mathrm{s}^{-1})$	2800	1
$L_{\rm bol}(L_{\odot})$	$1.91 \times 10^6 (d/8 \text{ kpc})^2$	3
$L_X (\mathrm{erg}\mathrm{s}^{-1})$	$5.17 \times 10^{33} (d/8 \text{ kpc})^2$	3
P (days)	3.686 ± 0.01	2
$a(\mathbf{\hat{R}}_{\odot})$	53.0 ± 0.7	2
i	$74^{\circ}.5\pm2^{\circ}.0$	2
$d~(\mathrm{kpc})$	2-8	2

Models for WR 20a

Solving :

$$\begin{split} &\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \ , \\ &\frac{\partial\rho \vec{v}}{\partial t} + \nabla \cdot (\rho \vec{v} \vec{v} + p\mathbb{I}) = f \ , \\ &\frac{\partial e}{\partial t} + \nabla \cdot (e + p) \vec{v} = \rho \vec{f} \cdot \vec{v} - n^2 \Lambda(T) \end{split}$$

Being

$$f = \frac{\dot{M}R_*\beta}{4\pi r^4} \left(v_\infty - v_0\right) \left(1 - \frac{R_*}{r}\right)^{\beta - 1}$$

Obtaining the velocity and density profiles

$$v(r) = v_0 + (v_\infty - v_0) \left(1 - \frac{R_*}{r}\right)^{\beta}$$
$$\rho_w(r) = \frac{\dot{M}}{4\pi r^2 v(r)}$$

Using Mezcal code (De Colle & Raga 2006)

Density and Temperature profiles for the shocked material

Density and Temperature profiles for the shocked material

Lightcurves from Models

WR 20a

 Velocity profile model reproduce the LC path.

Luminosty
Lx = 1.86 × 1034(d/8 kpc)2 erg/s

Conclusions

- This kind of studies allow to describe the conditions of the preshock accelerating material, and hence may allow to reveal details of its acceleration process.
- Another example where extrapolate O-type star characteristics to WR does not work.

Future work

Inclusion of Coriolis effect. Study of Instabilities. A detailed study of the observational characteristics of WR binary stars are required.